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Abstract In this paper we consider a class of nonlinear reactions which are impor-
tant in stochastic reaction networks. We find the exact solution of the chemical master
equation for a class of irreversible and reversible nonlinear reactions. We also present
the explicit form of the equilibrium probability solution of the reactions. The results
can be used for analyzing stochastic dynamics of important reactions such as bind-
ing/unbinding reaction and protein dimerization.

Keywords Stochastic nonlinear reactions · Solutions of chemical master equations ·
Equilibrium probability

1 Introduction

Stochastic modeling of chemical or biochemical reaction networks is used when small
biochemical reaction systems are studied. Traditionally, continuous description of the
system has been utilized for long time. However, when the entire dynamics of the chem-
ical system are characterized by interactions of small number of reactant molecules,
the continuous description fails to explain the stochastic effects such as fluctuation.
To capture such effects properly, discrete stochastic description has to be adopted.
The discrete stochastic modeling describes how the molecular number of each spe-
cies evolves in the system. A vector variable n(t) = (n1(t), n2(t), . . . , ns(t)) is used
to denote the molecular number, where ni (t) is the molecular number of i th species
at time t . Since the molecular interactions are stochastic in nature, n(t) is a random
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vector. Under the Markovian assumption, n(t) is a continuous-time Markov process
with discrete states. If we denote Pr{n(t) = n} by p(n, t), we can write the governing
equation, so-called chemical master equation as

d

dt
p(n, t) =

∑

�

R�(n − V�) · p(n − V�, t)−
∑

�

R�(n) · p(n, t), (1)

where R� is so-called the propensity function for the �th reaction and V� is the �th
column of the stoichiometric matrix V that is the matrix whose (i, j)th component
represents the stoichiometric amount of the i th species changed by the occurrence of
the j th reaction [1]. The propensity R�(n) is computed as

R�(n) = c�h�(n), (2)

where c� is the probability that the �th reaction occurs per unit time and h�(n) is
the product of the numbers of reactants of the �th reaction, which is computed by
mass-action kinetics.

All accessible states of the system and transitions between them can be formulated
in a Markov chain. We let the vector ai denote the i th state of n and define the vector
p(t) as pi (t) = Pr(n(t) = ai ), where pi (t) is the i th entry of p(t). By labeling all
accessible states n and computing transition rates R(n) between them, the evolution
of the system can be completely described by a Kolmogorov equation of matrix form,
which is equivalent to Eq. (1),

dp(t)

dt
= K p(t), (3)

where K is the matrix of transition rates between the states, defined as

Ki j =
{R�(n) if ai = a j + V� for some � = 1, . . . , r

0 otherwise.

Here K is a Markov chain generator, i.e.
∑

i Ki j = 0 for each j , and Ki j ≥ 0 for each
j �= i .

The formal solution of (3)

p(t) = eK t p(0) (4)

describes how the system evolves exactly. However, if there are nonlinear reactions,
it is difficult to find the analytic solution of (3), since it is not simple to identify the
matrix K . Moreover, K is a big and sparse matrix for most of complex systems and is
infinite-dimensional if the state space of the system is unbounded. In such cases, the
solution of (4) is not easy to find even numerically.

The nonlinear reactions such as bimolecular reactions are ubiquitous and impor-
tant chemical processes in biological networks. For example, the enzyme-substrate
binding, ligand binding and dimerization can be considered as bimolecular reactions.

123



1552 J Math Chem (2012) 50:1550–1569

Although the exact solution of bimolecular reactions are hardly obtained as mentioned
before, there have been works for finding the solution of master equations of some
bimolecular reactions; McQuarrie found the equilibrium solutions of certain bimolec-
ular reactions including A+ B → C, 2A→ B+C, A+ B → C+D by utilizing the
generation function [2]. Laurenzi obtained the exact solution of the irreversible reac-
tion A+ B → C by applying Fourier transform and found the equilibrium probability
of the reversible reaction A + B−→←− C [3].

In this paper we explicitly represent the solutions of nonlinear reactions includ-
ing fundamental bimolecular reactions. This work is distinguished from the previous
works in that all types of bimolecular reactions are considered in a unified framework.
To authors’ knowledge, no works about finding the exact solution of master equations
of general nonlinear reactions have been done yet.

The outline of the paper is as follows. In Sect. 2, we find the exact solution of the
general form of nonlinear irreversible reactions of the type a A+bB → cC+d D and
study some exemplary cases. In Sect. 3, we present an explicit expression of stochas-
tic solutions of reversible reactions a A + bB−→←− cC + d D and find the equilibrium
solution of the reversible reactions. Throughout this paper, a vector and a matrix are
denoted by a boldfaced small letter and a capital letter, respectively.

2 Irreversible reactions

2.1 Stochastic solution of general irreversible reactions

In this section we deal with a class of irreversible stochastic nonlinear reactions

a A + bB
c1→ cC + d D. (5)

involving four species. Here the species A, B, C and D are all distinct and a, b, c and
d are nonnegative integers. c1 is the probability rate constant for the reaction [1]. We
denote the molecular number of species A, B, C and D as ni (t), i = 1, 2, 3, 4 at time
t , respectively and initial molecular numbers as a0, b0, c0 and d0, respectively. The
stochastic dynamics of (5) are described by a Markov chain with transition diagram
of all states as

(a0, b0, c0, d0)→ (a0 − a, b0 − b, c0 + c, d0 + d)→ · · ·
→ (a0 − Ma, b0 − Mb, c0 + Mc, d0 + Md),

where M is the largest positive integer that satisfies min{a0 − Ma, b0 − Mb} ≥ 0.
We denote each state of the above Markov chain by

Si = (a0 − (i − 1)a, b0 − (i − 1)b, c0 + (i − 1)c, d0 + (i − 1)d)) ,

i = 1, . . . , M + 1.

Let αi be the transition rate from Si into Si+1. That is, αi is the propensity and by (2),
it is computed as
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αi = c1

(
a0 − (i − 1)a

a

)(
b0 − (i − 1)b

b

)
,

for each i = 1, . . . , M and αi are all distinct [4]. Here

(
n

k

)
= n

k!(n − k)! .

Using these notations, one can describe the stochastic dynamics by

S1
α1→ S2

α2→ · · · αM→ SM+1. (6)

Remark Note that the stoichiometry of (5) is V = [−a, −b, c, d]T and the basis
matrix of the nullspace of V T ,N [V T ] is obtained as

A =
⎡

⎣
c 0 a 0
0 d 0 b
d 0 0 a

⎤

⎦ .

From the matrix A, one can obtain the conservation quantities as

cn1 + an3 = L1, dn2 + bn4 = L2, dn1 + an4 = L3,

where

L1 = ca0 + ac0, L2 = db0 + bd0, L3 = da0 + ad0.

Using these conservation quantities, one can identity each state Si by the state of one
of the four species, say A.

The governing equation of the Markov chain (6) is

dp
dt
= K p (7)

and the transition-rate matrix K is given by

K =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

−α1 0 0 0 · · · 0
α1 −α2 0 0 · · · 0
0 α2 −α3 0 · · · 0

. . .
. . .

. . .
...

αM−1 −αM 0
αM 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

To describe the stochastic dynamics, we find the exact solution of (7); Since K
is a lower triangular matrix, all eigenvalues of K are the diagonal entries 0 and
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−α1, . . . ,−αM , and they are all real and distinct. The governing equation is writ-
ten as

dp1

dt
= −α1 p1 (9)

dp2

dt
= α1 p1 − α2 p2 (10)

... = ... (11)
dpM

dt
= αM−1 pM−1 − αM pM (12)

dpM+1

dt
= αM pM (13)

If we assume p(0) = e1 where e1 is the unit vector (1, 0, . . . , 0), then we find the
solution of the above system as follows.

p1(t) = e−α1t (14)

p2(t) = α1

α1 − α2
(e−α2t − e−α1t ) (15)

After some computations, one can find the formula for general cases;

pi (t) =
i−2∏

j=0

α j+1

i−1∑

k=0

e−αk+1t

∏i−1
j=0
j �=k

(α j+1 − αk+1)
, (16)

for i = 2, . . . , M , and

pM+1(t) = 1−
M∑

i=1

pi (t). (17)

2.2 Special cases of irreversible reactions

Using the results in Sect. 2.1, we study some special cases of the reaction

a A + bB
c1→ cC + d D.

(Case I) d = 0 and a, b, c are non-zero.
In this case, we have a reaction system

a A + bB
c1→ cC.
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All possible states are Si = (a0−(i−1)a, b0−(i−1)b, c0+(i−1)c), i = 1, . . . , M+1,
where M is the largest positive integer that satisfies min{a0 − Ma, b0 − Mb} ≥ 0.

αi = c1

(
a0 − (i − 1)a

a

)(
b0 − (i − 1)b

b

)
,

for i = 1, . . . , M . The same argument is applied for the transition-rate matrix and
the solution of the governing equation as in Sect. 2.1. Note that each state Si can
be identified by (a0 − (i − 1)a) of species A, since there are conservation quantities
cn1 + an3 = L1, cn2 + bn3 = L2 where L1 = ca0 + ac0 and L2 = cb0 + bc0 are
constant.
(Case II) b = d = 0 and a, c are non-zero.

In this case, a reaction system is

a A
c1→ cC.

All possible states are Si = (a0 − (i − 1)a, c0 + (i − 1)c) , i = 1, . . . , M+1, where
M is the largest positive integer that satisfies a0 − Ma ≥ 0. In this case, for each
i = 1, . . . , M ,

αi = c1

(
a0 − (i − 1)a

a

)
.

The conservation quantity is cn1 + an2 = L1 where L1 = ca0 + ac0. Using these
conservation quantities, one can identity each state Si by (a0 − (i − 1)a) of species
A.

In Table 1, we find the state Si and αi for four typical irreversible reactions.
In Fig. 1, we illustrates the transient probability and the probability distribution

obtained by the formulas in Table 1 for the binding reaction A + B → C under the
initial condition (40, 30, 0). The results are compared with simulation results by the
direct method of the stochastic simulation algorithm.

3 Reversible bimolecular reactions

3.1 Solution of the general bimolecular reversible reactions

In this section, we deal with a class of reversible stochastic nonlinear reactions

a A + bB
c1−→←−

c−1
cC + d D

involving four distinct species A, B, C and D and we find the exact solution of the
master equation of the reactions.

Without loss of generality, we assume a ≥ b and c ≥ d and initial numbers of
species A, B, C and D by a0, b0, c0 and d0, respectively. All possible states can be
denoted by
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Table 1 Typical irreversible bimolecular reactions. Si are accessible states in Markov chain of the type of
the reaction

Reactions Values of Si , i = 1, . . . , M + 1 and αi , i = 1, . . . , M

A + B
c1→ C Si (a0 − i + 1, b0 − i + 1, c0 + i − 1)

αi c1(a0 − i + 1)(b0 − i + 1)

M min{a0 + 1, b0 + 1}
A + B

c1→ C + D Si (a0 − i + 1, b0 − i + 1, c0 + i − 1, d0 + i − 1)

αi c1(a0 − i + 1)(b0 − i + 1)

M min{a0 + 1, b0 + 1}
2A

c1→ C Si (a0 − 2(i − 1), c0 + i − 1)

αi
c1
2 (a0 − 2(i − 1)) (a0 − 2(i − 1)− 1)

M a0
2 + 1(even a0), a0−1

2 + 1(odd a0)

2A
c1→ C + D Si (a0 − 2(i − 1), c0 + i − 1, d0 + i − 1)

αi
c1
2 (a0 − 2(i − 1)) (a0 − 2(i − 1)− 1)

M a0
2 + 1(even a0), a0−1

2 + 1(odd a0)

Since all αi are identified, one can find the exact transient probability solution of the reaction by using (16)
and (17)

Fig. 1 Under the initial condition (40, 30, 0) of A + B → C , transient probabilities obtained by exact
formulas (14)–(17) and the direct method of stochastic simulation algorithm(SSA) for a the state S10 and
b S20. Probability distribution for all accessible states Si , i = 1, . . . , 31 at times c t = 0.2s and d t = 1s.
Here Si = (40− i + 1, 30− i + 1, i − 1). The results by SSA are based on 10,000 realizations

Si = (a0 + Na − (i − 1)a, b0 + Nb − (i − 1)b, c0 − Nc + (i − 1)c, d0

−Nd + (i − 1)d) ,
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for i = 1, . . . , N + M + 1. Here M is the largest positive integer that satisfies

M ≤ min

{
a0

a
,

b0

b

}
,

so that a0 − Ma ≥ 0 and b0 − Mb ≥ 0, and N is the largest positive integer that
satisfies

N ≤ min

{
c0

c
,

d0

d

}
,

so that c0 − Nc ≥ 0 and d0 − Nd ≥ 0. We let αi be the transition rate from the state
Si to Si+1 and let βi be the transition rate from Si+1 into Si . One can find

αi = c1

(
a0 + Na − (i − 1)a

a

)(
b0 + Nb − (i − 1)b

b

)
,

and

βi = c−1

(
c0 − (N − i)c

c

)(
d0 − (N − i)d

d

)
.

for each i = 1, . . . , N +M . One can describe the stochastic dynamics by the Markov
chain

S1

α1−→←−
β1

S2

α2−→←−
β2

· · ·
αN+M−→←−
βN+M

SN+M+1. (18)

The governing equation of the Markov Chain (18) is

dp
dt
= K p, (19)

and the transition-rate matrix K is

K =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−α1 β1 0 0 · · · 0
α1 −(α2 + β1) β2 0 · · · 0

0 α2 −(α3 + β2) β3

.

.

.

. . .
. . .

. . .

. . . −(αN+M + βN+M−1) βN+M
αN+M −βN+M

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

Note that K is a tridiagonal matrix. Before we do a detailed analysis on K , we briefly
go over the properties of the tridiagonal matrix; A tridiagonal matrix is the matrix
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which has zero entries below the first subdiagonal, and zero entries above the first
superdiagonal. Thus the generic form of a tridiagonal matrix G is

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

g11 g12 0 0 · · · 0
g21 g22 g23 0 · · · 0
0 g32 g33 g34

. . .
. . .

. . .

gn−1,n−2 gn−1,n−1 gn−1,n

gn,n−1 gn,n

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (21)

Note that if the matrix G is a real tridiagonal matrix and satisfies gi,i+1gi+1,i > 0 for
all i = 1, . . . , n − 1, then it is similar to a symmetric matrix [5]. Since a symmetric
tridiagonal matrix without any zero off-diagonal elements has real distinct eigenvalues
[7], all eigenvalues of the matrix G are real and distinct. Since the matrix K in (20) is
a tridiagonal matrix with αiβi > 0, i = 1, . . . , N + M , all eigenvalues of K are real
and distinct.

We denote each eigenvector of K by ui , i = 1, . . . , N +M , and the corresponding
eigenvalue by λi , i = 1, . . . , N + M . We write

K ui = λi ui , K 2ui = λ2
i ui , . . . , K N+M+1ui = λN+M+1

i ui .

The matrix K has only one zero eigenvalue and we let λ1 = 0. In the matrix form,

KU = UΛ, K 2U = UΛ2, . . . , K N+M+1U = UΛN+M+1.

where

U = [u1 |u2 | · · · |uN+M+1], Λ = diag(λ1, . . . , λN+M+1).

Since U is invertible, one finds

K m = UΛmU−1,

for m = 1, . . . , N + M + 1. That is, for m = 1, . . . , N + M + 1,

[K m]i j =
N+M+1∑

k=1

λm
k γi, j,k, (22)

where γi, j,k = UikU−1
k j . Thus, to compute γi, j,k , we find all eigenvectors, which will

require cumbersome computational works. Here we show how to find the constant
γi, j,k even without finding eigenvectors ui as follows;
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First notice that (22) gives a system

⎡

⎢⎢⎣

Ki j

K 2
i j

. . .

K N+M+1
i j

⎤

⎥⎥⎦ =

⎡

⎢⎢⎢⎣

λ1 λ2 · · · λN+M+1

λ2
1 λ2

2 · · · λ2
N+M+1

...
... · · · ...

λN+M+1
1 λN+M+1

2 · · · λN+M+1
N+M+1

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎣

γi, j,1
γi, j,2
. . .

γi, j,N+M+1

⎤

⎥⎥⎦

=

⎡

⎢⎢⎢⎣

1 1 · · · 1
λ1 λ2 · · · λN+M+1
...

... · · · ...

λN+M
1 λN+M

2 · · · λN+M
N+M+1

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎣

λ1γi, j,1
λ2γi, j,2

. . .

λN+M+1γi, j,N+M+1

⎤

⎥⎥⎦ .

Since all λi are distinct, the Vandermonde matrix

H =

⎡

⎢⎢⎢⎣

1 1 · · · 1
λ1 λ2 · · · λN+M+1
...

... · · · ...

λN+M
1 λN+M

2 · · · λN+M
N+M+1

⎤

⎥⎥⎥⎦

has its inverse [5] and its inverse matrix W is explicitly written [6] as

Wi j = (−1)N+M+1− jσN+M+2− j,i

N+M+1∏

j=1
j �=i

(λi − λ j )

,

where σi, j is defined for j = 1, . . . , N + M + 1 as

σ1, j = 1

and

σi, j =
N+M+1∑

r1=1
r1 �= j

N+M+1∑

r2=r1+1
r2 �= j

· · ·
N+M+1∑

ri−1=ri−2+1
ri−1 �= j

i−1∏

m=1

λrm , for i = 2, . . . , N + M + 1.

Thus, from the equation

⎡

⎢⎢⎣

λ1γi, j,1
λ2γi, j,2

. . .

λN+M+1γi, j,N+M+1

⎤

⎥⎥⎦ = H−1

⎡

⎢⎢⎣

Ki j

K 2
i j

. . .

K N+M+1
i j

⎤

⎥⎥⎦ ,
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one can obtain, for k ≥ 2,

γi, j,k =
∑N+M+1

m=1 Wk,m K m
i j

λk
.

(Note that λ1 = 0 and thus γi, j,1 is not defined from the above equation.) Therefore,
the solution P(t) is given by

Pi j (t) = (eK t )i j =
∞∑

m=0

tm

m! (K m)i j

=
∞∑

m=0

tm

m!

(
N+M+1∑

k=1

λm
k γi, j,k

)

=
N+M+1∑

k=2

γi, j,k

∞∑

m=0

(tλk)
m

m! + γi, j,1, since λ1 = 0

=
N+M+1∑

k=2

γi, j,keλk t + γi, j,1

=
N+M+1∑

k=2

∑N+M+1
m=1 Wk,m(K m)i j

λk
eλk t + γi, j,1. (23)

Here note that γi, j,1 is the equilibrium value of Pi, j (t) as t → ∞, since all λk <

0, k ≥ 2, and if a deterministic initial condition p(0) = e1 is given, γi, j,1 is explicitly
computed as follows (see Sect. 3.3 for details);

γi, j,1 =
(∏N+M

k=i βk

) (∏i−1
k=1 αk

)

∑N+M
j=0

(∏ j
k=1 αk

) (∏N+M
k= j+1 βk

) .

Thus, for a given initial condition p(0), i-th entry of the solution p(t) is

pi (t) =
N+M+1∑

j=1

N+M+1∑

k=2

γi, j,keλk t p j (0)+
N+M+1∑

j=1

γi, j,1 p j (0)

=
N+M+1∑

j=1

N+M+1∑

k=2

∑N+M+1
m=1 Wk,m K m

i j

λk
eλk t p j (0)+

N+M+1∑

j=1

γi, j,1 p j (0). (24)

Especially, if a deterministic condition p(0) = e1 is given, then

pi (t) =
N+M+1∑

k=1

γi,1,keλk t =
N+M+1∑

k=1

∑N+M+1
m=1 Wk,m(K m)i1

λk
eλk t + γi,1,1. (25)
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To find the eigenvalues λk in Eqs. (24) and (25), we consider a recursive formula for
finding the determinant of a tridiagonal n × n matrix G [5]:

det G = gn,n det Gn−1 − gn,n−1gn−1,n det Gn−2, (26)

where gi, j denotes (i, j)th component of G and Gi denotes the submatrix formed by
the first i rows and the first i columns of G. From the recursive formula (26) of a tridi-
agonal matrix, one can obtain recursive equations of the eigenvalues as follows; Let the
characteristic polynomial fN+M+1(λ) of K be fN+M+1(λ) ≡ det(λIN+M+1−K ) and
let the characteristic polynomial fi (λ) of the submatrix Ki be fi (λ) ≡ det(λIi − Ki )

for each i = 1, . . . , N + M . Since all matrices (λIi − Ki ) are tridiagonal, we have
recursive formulas for fN+M+1(λ)

fN+M+1(λ) = −(βN+M + λ) fN+M (λ)− αN+MβN+M fN+M−1(λ) (27)

fi (λ) = −(αi + βi−1 + λ) fi−1(λ)− αi−1βi−1 fi−2(λ), i = 3, . . . , N + M

(28)

f2(λ) = (α2 + β1 + λ)(α1 + λ)− α1β1, f1(λ) = −α1 − λ. (29)

By solving the recursive formulas, one can find all eigenvalues of K .
In the next section, we focus on fundamental nonlinear reactions. Note that after

identifying αi and βi , one can find the expression (23) of the solution of the bimolecular
reactions.

3.2 Special cases of reversible reactions

In this section, we study some special cases of the reversible reactions in Sect. 3.1.
We denote the initial number of species A, B and C by a0, b0 and c0, respectively.
(Case I) Consider

a A + bB
c1−→←−

c−1
cC.

Si = (a0 + Na − (i − 1)a, b0 + Nb − (i − 1)b, c0 − Nc + (i − 1)c) ,

and for i = 1, . . . , N + M ,

αi = c1

(
a0 + Na − (i − 1)a

a

)(
b0 + Nb − (i − 1)b

b

)
, βi = c−1

(
c0 − (N − i)c

c

)
.

Here M is the largest positive integer that satisfies M ≤ min{ a0
a , b0

b }, and N is the
largest positive integer that satisfies N ≤ c0

c .
(Case II) Consider

a A
c1−→←−

c−1
cC.
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Table 2 Typical reversible bimolecular reactions

Type of reactions Values of Si , i = 1, . . . , N + M + 1 and αi , βi , i = 1, . . . , N + M

(I) A + B
c1−→←−

c−1
C Si (a0 + N − i + 1, b0 + N − i + 1, c0 − N + i − 1)

αi c1(a0 + N − i + 1)(b0 + N − i + 1)

βi c−1i

M, N M = min{a0, b0}, N = c0

(II) A + B
c1−→←−

c−1
C + D Si (a0 + N − i + 1, b0 + N − i + 1, c0 − N + i − 1, d0 − N + i − 1)

αi c1(a0 + N − i + 1)(b0 + N − i + 1)

βi c−1(c0 − N + i)(d0 − N + i)

M, N M = min{a0, b0}, N = min{c0, d0}

(III) 2A
c1−→←−

c−1
C Si (a0 + 2(N − i + 1), c0 + i − 1− N )

αi
c1
2 (a0 + 2(N − i + 1))(a0 + 2(N − i)+ 1)

βi c−1i

M, N M = a0
2 (even a0), M = a0−1

2 (odd a0), N = c0

(IV) 2A
c1−→←−

c−1
C + D Si (a0 + 2(N − i + 1), c0 + i − 1− N , d0 + i − 1− N )

αi
c1
2 (a0 + 2(N − i + 1))(a0 + 2(N − i)+ 1)

βi c−1(c0 + i − N )(d0 + i − N )

M, N M = a0
2 (even a0), M = a0−1

2 (odd a0), N = min{c0, d0}
All accessible states Si of Markov chain and the propensities αi , βi are identified for each type of reversible
reactions. Using this table and Eqs. (24) and (25), one can find the exact transient probability solution of
the reaction

We denote, for i = 1, . . . , N + M + 1,

Si = (a0 + Na − (i − 1)a, c0 − Nc + (i − 1)c) ,

and for i = 1, . . . , N + M ,

αi = c1

(
a0 + Na − (i − 1)a

a

)
, βi = c−1

(
c0 − (N − i)c

c

)
.

Here M is the largest positive integer that satisfies M ≤ a0
a , and N is the largest

positive integer that satisfies N ≤ c0
c .

In Table 2, we summarize four typical but important stochastic bimolecular reac-
tions. Details are given in Appendix.
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3.3 Equilibrium solution

Equilibrium probability distribution describes how the stochastic dynamics of a chem-
ical reaction network are balanced at the end. It is a challenging problem to find ana-
lytic solutions of equilibrium probability for nonlinear reactions [2,3,8]. The equilib-
rium probability solutions of general bimolecular reactions can be obtained as explicit
expressions by using linear operator theory and finding the term ai, j,1 of the exact
transient probability solution (23) in Sect. 3.1. Since the matrix K is diagonalizable,
one can write from linear operator theory [9],

K =
∑

k

(λk Qk),

where Qk is the eigenprojection corresponding to the eigenvalue λk that is defined as

Qk = − 1

2π i

∫

Ck

R(λ, K ) dλ,

where Ck is a positively-oriented small circle enclosing λk but excluding other eigen-
values of K , and R(λk) is the resolvent of K defined as R(λ, K ) = (K − λI )−1.
Since

P(t) = eK t =
∑

k

eλk t Qk,

and λk < 0 except λ1 = 0, limt→∞ P(t) = Q1 at the equilibrium. Here Q1 is the
eigenprojection of the zero eigenvalue, and it is known from linear operator theory
and Markov chain theory that Q1 can be computed by Q1 = Π E [9]. Here Π is the
(N + M + 1) × 1 matrix, which is same as the column vector p(∞) and E is the
1× (N + M + 1) matrix, which is same as the row vector of ones, i.e.

Π =

⎡

⎢⎢⎢⎣

p1(∞)

p2(∞)
...

pN+M+1(∞)

⎤

⎥⎥⎥⎦ and E = [1, 1, · · · , 1].

Thus, from Eq. (23), one obtains

lim
t→∞ Pi j (t) = ai, j,1 = (Q1)i, j = (Π E)i, j = p j (∞).

Moreover, if a deterministic initial condition p(0) = e1 is given, one can find the
equilibrium probability p(∞) explicitly; It is known that the exact solution is written
as
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p(t) =
N+M+1∑

i=1

eλi t (u∗i )1ui , (30)

where (u∗i )1 is the first entry of u∗i for a given deterministic initial condition p(0) = e1
[10]. Thus, in Eq. (30), as t →∞, one obtains the solution at equilibrium

p(∞) = lim
t→∞p(t) = (u∗1)1u1, (31)

where u1 and u∗1 are eigenvectors of K and K T corresponding to 0 eigenvalue. Since
u1 ≡ (u1, . . . , uN+M+1)

T is the eigenvector corresponding to λ1 = 0, one has

K u1 = 0. (32)

If one solves Eq. (32), one can find a recursive formula

ui+1 = αi

βi
ui ,

for each i = 1, . . . , N + M . Thus, for each i ,

ui = αi−1αi−2 · · ·α1

βi−1βi−2 · · ·β1
u1.

By choosing u1 = 1 and using
∑

i pi (∞) = 1, we can obtain

1 = (u∗1)1

N+M+1∑

i=1

ui = (u∗1)1

(
1+ α1

β1
+ · · · αN+MαN+M−1 · · ·α1

βN+MβN+M−1 · · ·β1

)
.

Thus,

(u∗1)1 = 1

A
,

where

A =
(

1+ α1

β1
+ · · · + αN+MαN+M−1 · · ·α1

βN+MβN+M−1 · · ·β1

)
. (33)

Therefore, the equilibrium probability of the state i is

pi (∞) = 1

A

(
αi−1αi−2 · · ·α1

βi−1βi−2 · · ·β1

)
,

or using (33), one obtains
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Table 3 Equilibrium probability of reversible bimolecular reactions

Type of reactions Equilibrium probability pi = Q
P

(I) A + B
c1−→←−

c−1
C Q (c1)i−1(c−1)N+M+1−i

⎡

⎣
N+M∏

k=i

(c0 − N + k)

⎤

⎦

⎡

⎣
i−1∏

k=1

(a0 + N − k + 1)(b0 + N − k + 1)

⎤

⎦

P
N+M∑

j=0

⎛

⎝(c1) j (c−1)N+M− j

⎡

⎣
j∏

k=1

(a0 + N − k + 1)(b0 + N − k + 1)

⎤

⎦

⎡

⎣
N+M∏

k= j+1

(c0 − N + k)

⎤

⎦

⎞

⎠

(II) A + B
c1−→←−

c−1
C + D Q (c1)i−1(c−1)N+M+1−i

⎡

⎣
N+M∏

k=i

(c0 − N + k)(d0 − N + k)

⎤

⎦

⎡

⎣
i−1∏

k=1

(a0 + N − k + 1)(b0 + N − k + 1)

⎤

⎦

P
N+M∑

j=0

⎛

⎝(c1) j (c−1)N+M− j

⎡

⎣
j∏

k=1

(a0 + N − k + 1)(b0 + N − k + 1)

⎤

⎦

⎡

⎣
N+M∏

k= j+1

(c0 − N + k)(d0 − N + k)

⎤

⎦

⎞

⎠

(III) 2A
c1−→←−

c−1
C Q (c1/2)i−1(c−1)N+M+1−i

⎡

⎣
N+M∏

k=i

(c0 − N + k)

⎤

⎦

⎡

⎣
i−1∏

k=1

(a0 + 2(N − k + 1))(a0 + 2(N − k)+ 1)

⎤

⎦

P
N+M∑

j=0

⎛

⎝(c1/2) j (c−1)N+M− j

⎡

⎣
j∏

k=1

(a0+2(N−k+1))(a0+2(N−k)+1)

⎤

⎦

⎡

⎣
N+M∏

k= j+1

(c0 − N + k)

⎤

⎦

⎞

⎠

(IV) 2A
c1−→←−

c−1
C + D Q (c1/2)i−1(c−1)N+M+1−i

⎡

⎣
N+M∏

k=i

(c0 − N + k)(d0 − N + k)

⎤

⎦

⎡

⎣
i−1∏

k=1

(a0 + 2(N − k + 1))(a0 + 2(N − k)+ 1)

⎤

⎦

P
N+M∑

j=0

⎛

⎝(c1/2) j (c−1)N+M− j

⎡

⎣
j∏

k=1

(a0+2(N−k+1))(a0+2(N−k)+1)

⎤

⎦

⎡

⎣
N+M∏

k= j+1

(c0 − N + k)(d0 − N + k)

⎤

⎦

⎞

⎠

Using Table 3, one can find the explicit expression for equilibrium probability pi of each state Si described
in Table 2
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(a) (b)

(c) (d)

Fig. 2 Equilibrium probabilities of each case of Table 2, obtained by exact formulas in Table 2 and the
direct method of stochastic simulation algorithm (SSA). c1 = 1s−1, c−1 = 5s−1. Initial conditions are
a n(0) = (30, 20, 0), b n(0) = (30, 20, 0, 0), c n(0) = (30, 0), d n(0) = (30, 0, 0). The states Si are a
Si = (30−i+1, 20−i+1, i−1), i = 1, . . . , 21, b Si = (30−i+1, 20−i+1, i−1, i−1), i = 1, . . . , 21,
c Si = (30− 2(i − 1), i − 1), i = 1, . . . , 16, and d Si = (30− 2(i − 1), i − 1, i − 1), i = 1, . . . , 16. The
results by SSA are based on 10,000 realizations

pi (∞) =
(

e
∏N+M

k=i βk

) (∏i−1
k=1 αk

)

∑N+M
j=0

(∏ j
k=1 αk

) (∏N+M
k= j+1 βk

) , (34)

for each i = 1, . . . , N +M+1. Equation (34) can be used for finding any equilibrium
probability of any type of reversible reactions a A + bB−→←−cC + d D. Especially, in
Table 3, we present the explicit expression for the equilibrium probability of the four
bimolecular reactions in Table 2 by using (34). In Fig. 2, we compare the equilibrium
probability of the four reactions under certain initial conditions.

4 Conclusion

In this paper, we presented the analytic methods for finding the solutions of stochas-
tic master equations for a class of nonlinear reactions including typical bimolecular
reactions such as binding and dimerization. We found the explicit formulas for time-
dependent probability solution and equilibrium probability solution from chemical
master equation of bimolecular reactions. The results can be used for finding exact
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analytic solutions of the stochastic master master equations for a class of bimolec-
ular reactions without stochastic simulation. We expect that the methods presented
in this paper will be helpful for analyzing complex reaction networks with nonlinear
reactions.
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Appendix

Important bimolecular reactions

(Case I) A + B−→←− C
First we consider a reaction system

A + B
c1−→←−

c−1
C.

Suppose the initial condition n(0) = (a0, b0, c0). Since there is a symmetry of A
and B in the system, without loss of generality, we can assume a0 ≥ b0. Transitions
between all states are described by a Markov chain

(a0, b0, 0) −→←− (a0 − 1, b0 − 1, 1)−→←− (a0 − 2, b0 − 2, 2)−→←− · · ·
−→←− (a0 − b0, 0, b0).

We define Si as the state (a0 + c0 − i + 1, b0 + c0 − i + 1, i − 1) for each i =
1, . . . , b0 + c0 + 1. By defining αi = c1(a0 + c0 − i + 1)(b0 + c0 − i + 1) and
βi = c−1i , i.e., αi = the transition rate from the state Si to Si+1 and βi = the transition
rate from Si+1 into Si , we have the Markov chain

S1

α1−→←−
β1

S2

α2−→←−
β2

· · ·
αn−1−→←−
βn−1

Sn,

where n = b0 + c0 + 1.
(Case II) : A + B−→←− C + D
Suppose the initial condition n(0) = (a0, b0, c0, d0). Without loss of generality,

we assume a0 ≥ b0 and c0 ≥ d0. We define each state Si = (a0 + d0 − i + 1, b0 +
d0 − i + 1, c0 − d0 + i − 1, i − 1) for i = 1, 2, . . . , b0 + d0 + 1. Then one can see a
Markov chain

S1

α1−→←−
β1

S2

α2−→←−
β2

· · ·
αn−1−→←−
βn−1

Sn,
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where n = b0 + d0 + 1. Thus, the transition rates are

αi = c1(a0 + d0 − i + 1)(b0 + d0 − i + 1), βi = c−1(c0 − d0 + i)i,

for i = 1, 2, . . . , b0 + d0.
(Case III): 2A−→←− C
Suppose the initial condition n(0) = (a0, c0). Let

M =
⎧
⎨

⎩

a0

2
, if a0 is even

a0 − 1

2
, if a0 is odd

If we define each state Si = (a0 + 2(c0 − i + 1), i − 1), i = 1, 2, . . . , M + c0 + 1,
we obtain a Markov chain

S1

α1−→←−
β1

S2

α2−→←−
β2

· · ·
αn−→←−
βn

Sn,

where n = M + c0 + 1. The transition rates are

αi = c1

2
(a0 + 2(c0 − i + 1))(a0 + 2(c0 − i)+ 1), βi = c−1i,

for i = 1, 2, . . . , M + c0.
(Case IV) : 2A−→←− C + D
Suppose the initial condition n(0) = (a0, c0, d0) and assume c0 ≥ d0. Let

M =
⎧
⎨

⎩

a0

2
, if a0 is even

a0 − 1

2
, if a0 is odd

We let each state Si = (a0+2(d0−i+1), c0−d0+i−1, i−1), i = 1, 2, . . . , M+d0+1.
Then we have a Markov chain

S1

α1−→←−
β1

S2

α2−→←−
β2

· · ·
αn−1−→←−
βn−1

Sn,

where n = M + d0 + 1. Thus, the transition rates are

αi = c1

2
(a0 + 2(d0 − i + 1))(a0 + 2(d0 − i)+ 1), βi = c−1i(c0 − d0 + i),

for i = 1, 2, . . . , M + d0.
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